

PG - 623

IV Semester M.Sc. Examination, June 2017 (RNS - Repeaters) (2011-12 and Onwards) **MATHEMATICS**

M 401: Measure and Integration

Time: 3 Hours Max. Marks: 80

Instructions: i) Answer any five questions choosing atleast two from each Part.

ii) All questions carry equal marks.

PART - A

- 1. a) Prove that in any algebra a over a set X, a countable union can be expressed as a countable disjoint union.
 - b) Define σ -algebra. Prove that every algebra on a set X is contained in the smallest σ -algebra on X.
 - c) Define an outer measure. Prove that outer measure is translation invariant.

(6+6+4)

- 2. a) Show that the Lebesgue measure of an interval is equal to its length. Hence prove that, if A is a countable set then $m^*A = 0$.
 - b) Define G_{σ} sets. Let E be any set. Then prove that
 - i) Given $\varepsilon > 0$, there exists an open set $O \supset E$ such that $m^*(0) < m^*E + \varepsilon$.
 - ii) There exist a G_{σ} -set $G \supset E$ such that $m^*(E) = m^*(G)$. (8+8)
- 3. a) Let $\{E_n\}$ be a decreasing sequence of measurable sets with $m\,E_i < \infty$. Then prove that

$$m\left(\bigcap_{i=1}^{\infty}E_{i}\right)=\underset{n\to\infty}{lt}m\,E_{n}$$

Give an example to show that the condition $mE_i < \infty$ can not be released in the above case.

b) Let {E_i} be an infinite increasing sequence of measurable sets. Then prove

that
$$m\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} mE_n$$
. (8+8)

- a) Define a measurable function. Show that the following statements are equivalent for a function f: E → R* where R* denotes the extended real number system.
 - i) $\{x \in E / f(x) > a\}$ is measurable, $\forall a \in R$
 - ii) $\{x \in E / f(x) \ge a\}$ is measurable, $\forall a \in R$
 - iii) $\{x \in E / f(x) < a\}$ is measurable, $\forall a \in R$
 - iv) $\{x \in E / f(x) \le a\}$ is measurable, $\forall a \in R$

Further show that the above statements imply that for any $b \in R^*$, $\{x \in E \mid f(x) = b\}$ is measurable.

b) Let f be an extended real valued function defined on a measurable set E. Then prove that f is measurable if and only if for every open set G in \mathbb{R} , the set f^{-1} (G)is measurable. (8+8)

- 5. a) Define a simple function. Let ϕ and ψ be simple functions which vanish outside a set of finite measure. Then prove the following :
 - i) $\int a \phi + b \uparrow = a \int \phi + b \int \psi \ a, b \in \mathbb{R}$
 - ii) If $\phi \geq \psi \, a.e$ then $\int \! \varphi \geq \int \! \psi \, .$
 - b) Prove that a bounded function defined on a measurable set E of finite measure is Lebesgue integrable if and only if it is measurable. (8+8)
- - b) State and prove bounded convergence theorem.
 - c) Define Dini derivatives of a function. Let f(x) be a function defined by f(0) = 0

and
$$f(x) = x \sin(\frac{1}{x})$$
 for $x \ne 0$. Find $D^+f(0)$, $D_+f(0)$, $D^-f(0)$, $D_-f(0)$. (5+6+5)

- 7. a) If f is integrable on [a, b] and $\int_{a}^{x} f(t) dt = 0$ for all $x \in [a, b]$ then prove that f(t) = 0 a.e on [a, b].
 - b) Define absolute continuous function. If f(x) and g(x) are absolutely continuous functions then prove that $f\pm g$, f.g, $\frac{f}{g}(g\neq 0)$ are also absolutely continuous.
 - c) Show that a monotonic function on [a, b] is of bounded variation. (6+6+4)
- 8. a) Establish Minkowski's inequality.
 - b) Prove that a normal linear space is complete if and only if every absolutely summable series is summable. (8+8)
